Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1210517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744933

RESUMEN

The importance of gut-liver axis in the pathophysiology of metabolic dysfunction-associated fatty liver disease (MAFLD) is being investigated more closely in recent times. However, the inevitable changes in gut microbiota during progression of the disease merits closer look. The present work intends to assess the time-dependent gut dysbiosis in MAFLD, its implications in disease progression and role of plant-derived prebiotics in its attenuation. Male C57BL/6J mice were given western diet (WD) for up to 16 weeks and phloretin was administered orally. The fecal samples of mice were collected every fourth week for 16 weeks. The animals were sacrificed at the end of the study and biochemical and histological analyses were performed. Further, 16S rRNA amplicon sequencing analysis was performed to investigate longitudinal modification of gut microbiome at different time points. Findings of our study corroborate that phloretin alleviated the metabolic changes and mitigated circulating inflammatory cytokines levels. Phloretin treatment resists WD induced changes in microbial diversity of mice and decreased endotoxin content. Prolonged exposure of WD changed dynamics of gut microbiota abundance and distribution. Increased abundance of pathogenic taxa like Desulfovibrionaceae, Peptostreptococcus, Clostridium, and Terrisporobacter was noted. Phloretin treatment not only reversed this dysbiosis but also modulated taxonomic signatures of beneficial microbes like Ruminococcus, Lactobacillus, and Alloprevotella. Therefore, the potential of phloretin to restore gut eubiosis could be utilized as an intervention strategy for the prevention of MAFLD and related metabolic disorders.

2.
Front Microbiol ; 14: 1188649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547690

RESUMEN

Ophiocordyceps is a species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) depicting a fascinating relationship between microbes and insects. In the present study, a new species, Ophiocordyceps indica sp. nov., is discovered infecting lepidopteran larvae from tree line locations (2,202-2,653 m AMSL) of the Kullu District, Himachal Pradesh, Indian Western Himalayan region, using combinations of morphological and molecular phylogenetic analyses. A phylogeny for Ophiocordyceps based on a combined multigene (nrSSU, nrLSU, tef-1α, and RPB1) dataset is provided, and its taxonomic status within Ophiocordycipitaceae is briefly discussed. Its genome size (~59 Mb) revealed 94% genetic similarity with O. sinensis; however, it differs from other extant Ophiocordyceps species based on morphological characteristics, molecular phylogenetic relationships, and genetic distance. O. indica is identified as the second homothallic species in the family Ophiocordycipitaceae, after O. sinensis. The presence of targeted marker components, viz. nucleosides (2,303.25 µg/g), amino acids (6.15%), mannitol (10.13%), and biological activity data, suggests it to be a new potential source of nutraceutical importance. Data generated around this economically important species will expand our understanding regarding the diversity of Ophiocordyceps-like taxa from new locations, thus providing new research avenues.

3.
Front Plant Sci ; 14: 1141538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923125

RESUMEN

There is a renewed interest in sustainable agriculture wherein novel plant growth-promoting rhizobacteria (PGPR) are being explored for developing efficient biostimulants. The key requirement of a microbe to qualify as a good candidate for developing a biostimulant is its intrinsic plant growth-promoting (PGP) characteristics. Though numerous studies have been conducted to assess the beneficial effects of PGPRs on plant growth under normal and stressed conditions but not much information is available on the characterization of intrinsic traits of PGPR under stress. Here, we focused on understanding how temperature stress impacts the functionality of key stress tolerant and PGP genes of Bacillus sp. IHBT-705 isolated from the rhizosphere of saffron (Crocus sativus). To undertake the study, Bacillus sp. IHBT-705 was grown under varied temperature regimes, their PGP traits were assessed from very low to very high-temperature range and the expression trend of targeted stress tolerant and PGP genes were analyzed. The results illustrated that Bacillus sp. IHBT-705 is a stress-tolerant PGPR as it survived and multiplied in temperatures ranging from 4°C-50°C, tolerated a wide pH range (5-11), withstood high salinity (8%) and osmolarity (10% PEG). The PGP traits varied under different temperature regimes indicating that temperature influences the functionality of PGP genes. This was further ascertained through whole genome sequencing followed by gene expression analyses wherein certain genes like cspB, cspD, hslO, grpE, rimM, trpA, trpC, trpE, fhuC, fhuD, acrB5 were found to be temperature sensitive while, cold tolerant (nhaX and cspC), heat tolerant (htpX) phosphate solubilization (pstB1), siderophore production (fhuB and fhuG), and root colonization (xerC1 and xerC2) were found to be highly versatile as they could express well both under low and high temperatures. Further, the biostimulant potential was checked through a pot study on rice (Oryza sativa), wherein the application of Bacillus sp. IHBT-705 improved the length of shoots, roots, and number of roots over control. Based on the genetic makeup, stress tolerance potential, retention of PGP traits under stress, and growth-promoting potential, Bacillus sp. IHBT-705 could be considered a good candidate for developing biostimulants.

4.
Comput Struct Biotechnol J ; 21: 1292-1311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817960

RESUMEN

Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.

5.
Front Plant Sci ; 13: 954467, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330257

RESUMEN

Malaxis acuminata D. Don [=Crepidium acuminatum (D. Don) Szlach.] is an endangered medicinal orchid of the Ashtvarga group of plants in Ayurveda (Indian system of traditional medicine). Using a combination of aromatic cytokinin [meta-Topolin (mT)], plant biostimulant (chitosan), auxin [indole-3-butyric acid (IBA)], and a phenolic elicitor [phloroglucinol (PG)], plants of M. acuminata were regenerated in vitro for mass multiplication. The present research reveals the first-ever transcriptome of M. acuminata. A total of 43,111 transcripts encoding 23,951 unigenes were assembled de novo from a total of 815.02 million reads obtained from leaf and pseudobulb of in vitro raised M. acuminata. Expression analysis of genes associated with ß-sitosterol and eugenol biosynthesis in leaf and pseudobulb provided vital clues for differential accumulation of metabolites in M. acuminata. Ultra-performance liquid chromatography (UPLC) confirmed higher amounts of ß-sitosterol and eugenol content in the leaf as compared to the pseudobulb. Differential expression of transcripts related to starch and sucrose metabolism, plant hormone signal transduction, diterpenoid biosynthesis, phenylalanine metabolism, stilbenoid, diarylheptanoid, and gingerol biosynthesis suggested the operation of differential metabolic pathways in leaf and pseudobulb. The present research provides valuable information on the biosynthesis of secondary metabolites in M. acuminata, which could be used for advanced metabolite bioprospection using cell suspension culture and bioreactor-based approaches. Data also suggested that leaf tissues rather than pseudobulb can be used as an alternate source of bioactive metabolites thereby shifting the need for harvesting the pseudobulb. This will further facilitate the conservation and sustainable utilization of this highly valued medicinal orchid.

6.
Sci Rep ; 12(1): 15553, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114408

RESUMEN

The high-altitude alpine regions are characterized by highly variable and harsh environmental conditions. However, relatively little is known about the diverse mechanisms adopted by alpine plants to adapt to these stressful conditions. Here, we studied variation in transcriptome and physiological adjustments occurring across the year at high elevation environments in the leaf tissue of Rhododendron anthopogon, an evergreen shrub of Himalaya. The samples were collected at 12 different time-points, from August until snowfall in November 2017, and then from June to September 2018. It was observed that with a drop in both ambient air temperature and photoperiod towards onset of winter, the freezing resistance of plants increased, resulting in 'cold acclimation'. Further, 'de-acclimation' was associated with a decrease in freezing resistance and increase in photosynthetic efficiency of leaves during spring. A considerable amount of variation was observed in the transcriptome in a time-dependent sequential manner, with a total of 9,881 differentially expressed genes. Based on gene expression profiles, the time-points could be segregated into four clusters directly correlating with the distinct phases of acclimation: non-acclimation (22-August-2017, 14-August-2018, 31-August-2018), early cold acclimation (12-September-2017, 29-September-2017), late cold acclimation (11-October-2017, 23-October-2017, 04-November-2017, 18-September-2018) and de-acclimation (15-June-2018, 28-June-2018, 14-July-2018). Cold acclimation was a gradual process, as indicated by presence of an intermediate stage (early acclimation). However, the plants can by-pass this stage when sudden decrease in temperature is encountered. The maximum variation in expression levels of genes occurred during the transition to de-acclimation, hence was 'transcriptionally' the most active phase. The similar or higher expression levels of genes during de-acclimation in comparison to non-acclimation suggested that molecular functionality is re-initiated after passing through the harsh winter conditions.


Asunto(s)
Altitud , Frío , Aclimatación/genética , Perfilación de la Expresión Génica , RNA-Seq
7.
BMC Plant Biol ; 21(1): 414, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503445

RESUMEN

BACKGROUND: Adventitious root formation is considered a major developmental step during the propagation of difficult to root plants, especially in horticultural crops. Recently, adventitious roots induced through plant tissue culture methods have also been used for production of phytochemicals such as flavonoids, anthocyanins and anthraquinones. It is rather well understood which horticultural species will easily form adventitious roots, but the factors affecting this process at molecular level or regulating the induction process in in vitro conditions are far less known. The present study was conducted to identify transcripts involved in in vitro induction and formation of adventitious roots using Arnebia euchroma leaves at different time points (intact leaf (control), 3 h, 12 h, 24 h, 3 d, 7 d, 10 d and 15 d). A. euchroma is an endangered medicinal Himalayan herb whose root contains red naphthoquinone pigments. These phytoconstituents are widely used as an herbal ingredient in Asian traditional medicine as well as natural colouring agent in food and cosmetics. RESULTS: A total of 137.93 to 293.76 million raw reads were generated and assembled to 54,587 transcripts with average length of 1512.27 bps and N50 of 2193 bps, respectively. In addition, 50,107 differentially expressed genes were identified and found to be involved in plant hormone signal transduction, cell wall modification and wound induced mitogen activated protein kinase signalling. The data exhibited dominance of auxin responsive (AUXIN RESPONSE FACTOR8, IAA13, GRETCHEN HAGEN3.1) and sucrose translocation (BETA-31 FRUCTOFURANOSIDASE and MONOSACCHARIDE-SENSING protein1) genes during induction phase. In the initiation phase, the expression of LATERAL ORGAN BOUNDARIES DOMAIN16, EXPANSIN-B15, ENDOGLUCANASE25 and LEUCINE-rich repeat EXTENSION-like proteins was increased. During the expression phase, the same transcripts, with exception of LATERAL ORGAN BOUNDARIES DOMAIN16 were identified. Overall, the transcriptomic analysis revealed a similar patterns of genes, however, their expression level varied in subsequent phases of in vitro adventitious root formation in A. euchroma. CONCLUSION: The results presented here will be helpful in understanding key regulators of in vitro adventitious root development in Arnebia species, which may be deployed in the future for phytochemical production at a commercial scale.


Asunto(s)
Boraginaceae/genética , Hojas de la Planta , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Boraginaceae/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Indoles/farmacología , Anotación de Secuencia Molecular , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Análisis de Secuencia de ARN , Técnicas de Cultivo de Tejidos/métodos
8.
Sci Rep ; 11(1): 14944, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294764

RESUMEN

Picrorhiza kurrooa is an endangered medicinal herb which is distributed across the Himalayan region at an altitude between 3000-5000 m above mean sea level. The medicinal properties of P. kurrooa are attributed to monoterpenoid picrosides present in leaf, rhizome and root of the plant. However, no genomic information is currently available for P. kurrooa, which limits our understanding about its molecular systems and associated responses. The present study brings the first assembled draft genome of P. kurrooa by using 227 Gb of raw data generated by Illumina and PacBio RS II sequencing platforms. The assembled genome has a size of n = ~ 1.7 Gb with 12,924 scaffolds. Four pronged assembly quality validations studies, including experimentally reported ESTs mapping and directed sequencing of the assembled contigs, confirmed high reliability of the assembly. About 76% of the genome is covered by complex repeats alone. Annotation revealed 24,798 protein coding and 9789 non-coding genes. Using the assembled genome, a total of 710 miRNAs were discovered, many of which were found responsible for molecular response against temperature changes. The miRNAs and targets were validated experimentally. The availability of draft genome sequence will aid in genetic improvement and conservation of P. kurrooa. Also, this study provided an efficient approach for assembling complex genomes while dealing with repeats when regular assemblers failed to progress due to repeats.


Asunto(s)
Mapeo Contig/métodos , Genoma de Planta , Picrorhiza/genética , Análisis de Secuencia de ADN/métodos , Especies en Peligro de Extinción , Tamaño del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Plantas Medicinales/genética
9.
Plant Direct ; 5(6): e00325, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34142001

RESUMEN

Rose is an economically important flowering plant that holds an essential place in cut flower, medicinal, and aromatic industries. The presence of prickles, epidermal outgrowths resembling trichomes, on rose is highly undesirable as these make harvesting and transportation difficult. Attempts were made for generating rose varieties lacking prickles via breeding and natural selections; however, these approaches obtained only chimeric and genetically unstable prickle-less mutants. The alternative way to get rid of prickles is via genetic manipulations, but the molecular mechanisms of prickle initiation and development in rose are almost unexplored. Therefore, the present study was carried out to understand the morphological, molecular, and correlated metabolic changes underlining prickle morphogenesis in a prickle-bearing Rosa hybrida L. cv. "First Red (FR)". The histological and metabolomic analyses at three distinct stages of the prickle morphogenesis, namely, emerging tiny initiating prickles, partially greenish soft prickles, and brownish hard prickles, demonstrated a gradually increasing deposition of phenolic compounds and lignification with development. Corresponding RNAseq analysis revealed an upregulation of the genes involved in secondary metabolism, especially in the phenylpropanoid biosynthetic pathway. A set of genes encoding a transcriptional network similar to the one regulating epidermal cell differentiation leading to phenylpropanoid accumulation and trichome development, was also upregulated. Differential expression of this transcriptional network in prickle-less R. hybrida L. cv. "Himalayan Wonder" compared to prickly FR plants substantiated its involvement in prickle morphogenesis. The results collectively supported the proposition that prickles are evolved from trichomes and provided molecular clues towards engineering prickle-less roses. SIGNIFICANCE STATEMENT: Prickles, the vasculature less epidermal outgrowths resembling trichomes, are defense organs protecting plants against herbivory. Despite biological significance, the mechanism of prickle morphogenesis remains obscure. Here, we show that like trichomes, prickles accumulate secondary metabolites, especially lignin and flavonoids, during morphogenesis. Cognate transcriptome analysis demonstrated that upregulation of a hormone-regulated transcriptional activation-inhibition network, known to govern trichome morphogenesis, likely triggers the differentiation of epidermal cells to outgrow into prickle.

10.
Sci Rep ; 11(1): 3702, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580100

RESUMEN

Rheum australe is an endangered medicinal herb of high altitude alpine region of Himalayas and is known to possess anti-cancerous properties. Unlike many herbs of the region, R. australe has broad leaves. The species thrives well under the environmental extremes in its niche habitat, therefore an understanding of transcriptome of R. australe to environmental cues was of significance. Since, temperature is one of the major environmental variables in the niche of R. australe, transcriptome was studied in the species growing in natural habitat and those grown in growth chambers maintained at 4 °C and 25 °C to understand genes associated with different temperatures. A total of 39,136 primarily assembled transcripts were obtained from 10,17,74,336 clean read, and 21,303 unigenes could match to public databases. An analysis of transcriptome by fragments per kilobase of transcript per million, followed by validation through qRT-PCR showed 22.4% up- and 22.5% down-regulated common differentially expressed genes in the species growing under natural habitat and at 4 °C as compared to those at 25 °C. These genes largely belonged to signaling pathway, transporters, secondary metabolites, phytohormones, and those associated with cellular protection, suggesting their importance in imparting adaptive advantage to R. australe in its niche.


Asunto(s)
Especies en Peligro de Extinción , Interacción Gen-Ambiente , Rheum/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , India , Anotación de Secuencia Molecular , Plantas Medicinales/metabolismo , Temperatura
11.
Epilepsia ; 62(2): 504-516, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33341939

RESUMEN

OBJECTIVE: Sudden unexpected death in epilepsy (SUDEP) is a major outcome of cardiac dysfunction in patients with epilepsy. In continuation of our previous work, the present study was envisaged to explore the key regulators responsible for cardiac damage associated with chronic seizures using whole transcriptome and proteome analysis in a rat model of temporal lobe epilepsy. METHODS: A standard lithium-pilocarpine protocol was used to induce recurrent seizures in rats. The isolated rat heart tissue was subjected to transcriptomic and proteomic analysis. An integrated approach of RNA-Seq, proteomics, and system biology analysis was used to identify key regulators involved in seizure-linked cardiac changes. The analyzed differential expression patterns and network interactions were supported by gene and protein expression studies. RESULTS: Altogether, 1157 differentially expressed genes and 1264 proteins were identified in the cardiac tissue of epileptic animals through RNA-Seq and liquid chromatography with tandem mass spectrometry-based proteomic analysis, respectively. The network analysis revealed seven critical genes-STAT3, Myc, Fos, Erbb2, Erbb3, Notch1, and Mapk8-that could play a role in seizure-mediated cardiac changes. The LC-MS/MS analysis supported the activation of the transforming growth factor ß (TGF-ß) pathway in the heart of epileptic animals. Furthermore, our gene and protein expression studies established a key role of STAT3, Erbb, and Mapk8 to develop cardiac changes linked with recurrent seizures. SIGNIFICANCE: The present multi-omics study identified STAT3, Mapk8, and Erbb as key regulators involved in seizure-associated cardiac changes. It provided a deeper understanding of molecular, cellular, and network-level operations of the identified regulators that lead to cardiac changes in epilepsy.


Asunto(s)
Epilepsia/genética , Cardiopatías/genética , Miocardio/metabolismo , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/complicaciones , Epilepsia/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Cardiopatías/etiología , Cardiopatías/metabolismo , Cloruro de Litio/toxicidad , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Agonistas Muscarínicos/toxicidad , Pilocarpina/toxicidad , Proteoma , Proteómica , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , RNA-Seq , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo
12.
Sci Rep ; 8(1): 7451, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748645

RESUMEN

Nitrate is the main source of inorganic nitrogen for plants, which also act as signaling molecule. Present study was aimed to understand nitrate regulatory mechanism in Brassica juncea cultivars, with contrasting nitrogen-use-efficiency (NUE) viz. Pusa Bold (PB, high-NUE) and Pusa Jai Kisan (PJK, low-NUE), employing RNA-seq approach. A total of 4031, 3874 and 3667 genes in PB and 2982, 2481 and 2843 genes in PJK were differentially expressed in response to early, low (0.25 mM KNO3), medium (2 mM KNO3) and high (4 mM KNO3) nitrate treatments, respectively, as compared to control (0 mM KNO3). Genes of N-uptake (NRT1.1, NRT1.8, and NRT2.1), assimilation (NR1, NR2, NiR, GS1.3, and Fd-GOGAT) and remobilization (GDH2, ASN2-3 and ALaT) were highly-upregulated in PB than in PJK in response to early nitrate treatments. We have also identified transcription factors and protein kinases that were rapidly induced in response to nitrate, suggesting their involvement in nitrate-mediated signaling. Co-expression network analysis revealed four nitrate specific modules in PB, enriched with GO terms like, "Phenylpropanoid pathway", "Nitrogen compound metabolic process" and "Carbohydrate metabolism". The network analysis also identified HUB transcription factors like mTERF, FHA, Orphan, bZip and FAR1, which may be the key regulators of nitrate-mediated response in B. juncea.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Planta de la Mostaza/genética , Nitratos/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Planta de la Mostaza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Sci Rep ; 7(1): 11835, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928460

RESUMEN

Stevia is a natural source of commercially important steviol glycosides (SGs), which share biosynthesis route with gibberellic acids (GAs) through plastidal MEP and cytosolic MVA pathways. Ontogeny-dependent deviation in SGs biosynthesis is one of the key factor for global cultivation of Stevia, has not been studied at transcriptional level. To dissect underlying molecular mechanism, we followed a global transcriptome sequencing approach and generated more than 100 million reads. Annotation of 41,262 de novo assembled transcripts identified all the genes required for SGs and GAs biosynthesis. Differential gene expression and quantitative analysis of important pathway genes (DXS, HMGR, KA13H) and gene regulators (WRKY, MYB, NAC TFs) indicated developmental phase dependent utilization of metabolic flux between SGs and GAs synthesis. Further, identification of 124 CYPs and 45 UGTs enrich the genomic resources, and their PPI network analysis with SGs/GAs biosynthesis proteins identifies putative candidates involved in metabolic changes, as supported by their developmental phase-dependent expression. These putative targets can expedite molecular breeding and genetic engineering efforts to enhance SGs content, biomass and yield. Futuristically, the generated dataset will be a useful resource for development of functional molecular markers for diversity characterization, genome mapping and evolutionary studies in Stevia.


Asunto(s)
Diterpenos de Tipo Kaurano , Regulación de la Expresión Génica de las Plantas/fisiología , Glicósidos , Hojas de la Planta , Proteínas de Plantas , Stevia , Diterpenos de Tipo Kaurano/biosíntesis , Diterpenos de Tipo Kaurano/genética , Glicósidos/biosíntesis , Glicósidos/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Stevia/genética , Stevia/crecimiento & desarrollo , Transcripción Genética/fisiología
14.
Syst Appl Microbiol ; 40(7): 430-439, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28882448

RESUMEN

The assessment of bacterial diversity and bioprospection of the high-altitude lake Suraj Tal microorganisms for potent antimicrobial activities revealed the presence of two Gram-stain-variable, endospore-forming, rod-shaped, aerobic bacteria, namely IHBB 9852T and IHBB 9951. Phylogenetic analysis based on 16S rRNA gene sequence showed the affiliation of strains IHBB 9852T and IHBB 9951 within the genus Paenibacillus, exhibiting the highest sequence similarity to Paenibacillus lactis DSM 15596T (97.8% and 97.7%) and less than 95.9% similarity to other species of the genus Paenibacillus. DNA-DNA relatedness among strains IHBB 9852T and IHBB 9951 was 90.2%, and with P. lactis DSM 15596T, was 52.7% and 52.4%, respectively. The novel strains contain anteiso-C15:0, iso-C15:0, C16:0 and iso-C16:0 as major fatty acids, and phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol were predominant polar lipids. The DNA G+C content for IHBB 9852T and IHBB 9951 was 52.1 and 52.2mol%. Based on the results of phenotypic and genomic characterisations, we concluded that strains IHBB 9852T and IHBB 9951 belong to a novel Paenibacillus species, for which the name Paenibacillus ihbetae sp. nov. is proposed. The type strain is IHBB 9852T (=MTCC 12459T=MCC 2795T=JCM 31131T=KACC 19072T; DPD TaxonNumber TA00046) and IHBB 9951 (=MTCC 12458=MCC 2794=JCM 31132=KACC 19073) is a reference strain.


Asunto(s)
Antibacterianos/análisis , Antibacterianos/biosíntesis , Paenibacillus/clasificación , Paenibacillus/genética , Altitud , Técnicas de Tipificación Bacteriana , Composición de Base/genética , Frío , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genoma Bacteriano/genética , India , Lagos/microbiología , Paenibacillus/aislamiento & purificación , Paenibacillus/metabolismo , ARN Ribosómico 16S/genética , Microbiología del Suelo
15.
Genom Data ; 13: 46-49, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28725557

RESUMEN

The cold-active esterases are gaining importance due to their catalytic activities finding applications in chemical industry, food processes and detergent industry as additives, and organic synthesis of unstable compounds as catalysts. In the present study, the complete genome sequence of 4,843,645 bp with an average 34.08% G + C content and 4260 protein-coding genes are reported for the low temperature-active esterase-producing novel strain of Chrysobacterium isolated from the top-surface soil of a glacier in the cold deserts of the Indian trans-Himalayas. The genome contained two plasmids of 16,553 and 11,450 bp with 40.54 and 40.37% G + C contents, respectively. Several genes encoding the hydrolysis of ester linkages of triglycerides into fatty acids and glycerol were predicted in the genome. The annotation also predicted the genes encoding proteases, lipases, amylases, ß-glucosidases, endoglucanases and xylanases involved in biotechnological processes. The complete genome sequence of Chryseobacterium sp. strain IHBB 10212 and two plasmids have been deposited vide accession numbers CP015199, CP015200 and CP015201 at DDBJ/EMBL/GenBank.

16.
Sci Rep ; 7: 42593, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198417

RESUMEN

The availability of sufficient chilling during bud dormancy plays an important role in the subsequent yield and quality of apple fruit, whereas, insufficient chilling availability negatively impacts the apple production. The transcriptome profiling during bud dormancy release and initial fruit set under low and high chill conditions was performed using RNA-seq. The comparative high number of differentially expressed genes during bud break and fruit set under high chill condition indicates that chilling availability was associated with transcriptional reorganization. The comparative analysis reveals the differential expression of genes involved in phytohormone metabolism, particularly for Abscisic acid, gibberellic acid, ethylene, auxin and cytokinin. The expression of Dormancy Associated MADS-box, Flowering Locus C-like, Flowering Locus T-like and Terminal Flower 1-like genes was found to be modulated under differential chilling. The co-expression network analysis indentified two high chill specific modules that were found to be enriched for "post-embryonic development" GO terms. The network analysis also identified hub genes including Early flowering 7, RAF10, ZEP4 and F-box, which may be involved in regulating chilling-mediated dormancy release and fruit set. The results of transcriptome and co-expression network analysis indicate that chilling availability majorly regulates phytohormone-related pathways and post-embryonic development during bud break.


Asunto(s)
Frío , Flores/fisiología , Frutas/fisiología , Malus/fisiología , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Biología Computacional/métodos , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Anotación de Secuencia Molecular , Latencia en las Plantas/genética , Estaciones del Año , Transcriptoma
17.
Sci Rep ; 6: 30412, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27465480

RESUMEN

To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops.


Asunto(s)
Camellia sinensis/genética , Camellia sinensis/microbiología , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma , Camellia sinensis/metabolismo , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Anotación de Secuencia Molecular
18.
J Biotechnol ; 230: 1-2, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27114323

RESUMEN

A genome of 5.88Mb with 46.83% G+C content is reported for an endoglucanase-producing bacterium Paenibacillus sp. strain IHB B 3084 isolated from the cold environments of the Indian Trans-Himalayas. The psychrotrophic bacterium produces low-temperature active and alkaline-stable endoglucanases of industrial importance. The genomic data has provided insight into genomic basis of cellulase production and survival of the bacterium in the cold environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulasa/metabolismo , Genoma Bacteriano/genética , Paenibacillus/genética , Frío , Sedimentos Geológicos/microbiología , Paenibacillus/enzimología
19.
J Biotechnol ; 222: 17-8, 2016 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-26854947

RESUMEN

Here, we report the first ever complete genome sequence of any species in the genus Microterricola. The bacterium Microterricola viridarii ERGS5:02 isolated from the glacial stream of Sikkim Himalaya survived at low temperature and exhibited enhanced growth upon UV treatment, in addition, it also produced cold active enzymes. The complete genome assembly of 3.7 Mb suggested for the presence of genetic elements favoring the survival of bacterium under extreme conditions of UV and low temperature besides producing amylase, lipase and protease of industrial relevance.


Asunto(s)
Actinobacteria/enzimología , Actinobacteria/genética , Extremófilos/enzimología , Extremófilos/genética , Genoma Bacteriano/genética , Actinobacteria/fisiología , Proteínas Bacterianas/genética , Microbiología Ambiental , Extremófilos/fisiología , Análisis de Secuencia de ADN , Sikkim
20.
J Biotechnol ; 220: 86-7, 2016 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-26806489

RESUMEN

Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium which exhibited tolerance to cold and UV radiations was isolated from the glacial stream of East Rathong glacier in Sikkim Himalaya. Here we report the 4.3Mb complete genome assembly that has provided the basis for potential role of pigments as a survival strategy to combat stressed environment of cold and high UV-radiation and additionally the ability to produce cold active industrial enzymes.


Asunto(s)
Arthrobacter/genética , Genoma Bacteriano , Arthrobacter/aislamiento & purificación , Arthrobacter/efectos de la radiación , Composición de Base , Secuencia de Bases , Mapeo Cromosómico , Frío , ADN Bacteriano/genética , ADN Ribosómico/genética , Tamaño del Genoma , Cubierta de Hielo/microbiología , Datos de Secuencia Molecular , Pigmentación/fisiología , ARN Ribosómico/genética , ARN Ribosómico 16S/genética , Sikkim , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...